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Abstract--A complete two-phase shear layer calculation method is presented for the prediction of 
non-equilibrium effects occumng m the wcinity of sohd walls. Water droplets are treated m a Lagrang0an 
fashion and an integral shear layer techmque, capable of handhng both attached and separated 
compressible shear layers, is used for the carrier phase A parametnc analysis concerning the most 
representative shear layer quantmes is included in detail. A number of theoretical test cases are 
investigated including single- and two-phase flows, under d~fferent inlet droplet conditsons, in a 
two-d~menstonal convergent<livergent duct. 
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1. I N T R O D U C T I O N  

Low efficiency and blade erosion are the two main problems associated with wetness in steam 
turbines, employed in large-scale electricity generation. Nowadays, due to increasing fuel costs, it 
has become particularly important to optimize the performance of  these machines, not only for 
minimum aerodynamic loss but also for minimum wetness loss. 

Over the last few decades, it has been common design practice to predict the wetness loss using 
empirical rules. More recently, theoretical approaches have been developed based on the 
application of  the one-dimensional wet steam theory to the turbine geometry. However, the flow 
pattern in a low-pressure turbine stage with a twisted blading is strongly three-dimensional. The 
simple one-dimensional approach is, therefore, of  little value and, in order to provide a useful 
design tool, the researcher must adapt his theory for use with conventional turbomachinery 
calculation methods. 

For the complex turbulent flows encountered in turbine blade passages, an acceptable way of  
circumventing the time-comsuming task of  solving the full Navier-Stokes equations, without losing 
too much accuracy, is to use the two-zone hypothesis, which is based on the decomposition of  the 
flow into an inviscid and a viscous part. Consequently, two different computing tools are necessary, 
one that deals with the viscous effects and another that deals with the inviscid external flow 
(Malamatenios et al. 1990). The two-zone hypothesis is employed here, where the flow, presented 
schematically in figure 1, is considered as purely two-dimensional. 

The objective of the present paper is to present in detail the theoretical aspects upon which a 
complete two-phase shear layer integral calculation method was built. The authors do not intend 
to further analyse either the external two-phase solver or the coupling techniques related to the 
two-zone approach, since this was the subject of the abovementioned publication. An existing 
single-phase integral shear layer method, which has been extensively validated in a variety of  cases 
(Papailiou & Bouras 1990; Bouras 1991; Papailiou 1981), was used as a basis for the development 
of  the two-phase method. All the necessary modifications to the existing single-phase method, as 
well as the differences and similarities between all the involved quantities, are presented and 
discussed in the following paragraphs. 

In order to simulate the motion of  the droplets within the shear layer, the Lagrangian approach 
was used and the dispersed phase was regarded as a source of  mass, momentum and energy to the 
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continuous one, as proposed by Crowe et al. (1977). It is an identical approach to the one 
mcorporated in the external flow region solver for the treatment of the particulate phase. The 
method allows for a flux of droplets entering or exiting the shear layer boundary; this flux may 
be calculated once the communication between the core flow and the shear layer has been 
established. 

2. T H E O R E T I C A L  A N A L Y S I S  A N D  M E T H O D  O F  S O L U T I O N  

For the sake of completeness, a few words about the two-zone approach are in order. In the 
wcimty of the wall, the presence of the shear layer retards the flow, displacing the outer flow 
streamlines (blockage effect). The outer flow therefore "sees" an effective body which is thicker than 
the real one by the displacement thickness. The overall calculation is carried out in an iterative 
manner, each inviscid solution providing the external flow conditions for the following shear layer 
calculation, while the shear layer solution provides boundary conditions for the following inviseid 
calculation (Malamatenios et al. 1990; Papailiou & Bouras 1990). Iterations continue until 
convergence. Such an iterative procedure is possible with the present formulation, even if strong 
separation is present. 

The same, essentially, iterative procedure is applied for two-phase flows. In this case, however, 
boundary conditions for additional quantities have to be specified, in particular the droplet size, 
temperature and velocity vector at the shear layer edge, along with the void fraction values at the 
same boundaries. The analysis of the viscous part of the flow constitutes a parabolic problem, 
which requires the solution of two integral equations for the gaseous phase together with the 
transport equations for the water droplets, in order to predict the development of the two-phase 
shear layer along a solid surface. 

2. I. Governing equations for  steam 

The basic equations for steam are expressed in a rotating frame of reference. These are the 
two-phase local time-averaged equations, introduced by Delhaye (1981). In order to treat the 
viscous problem on the blade-to-blade surface, the continuity, momentum and energy equations 
are written in a curvilinear coordinate system (s, n) (see figure 1), where the s-lines of the system 
coincide with the real flow streamlines. By subtracting the basic equations, as written for the 
external and the real flow, the corresponding deficit equations are formulated, which are finally 
integrated along the normal to the streamwise direction (n). By introducing the definitions of the 
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various thicknesses and the other integral quantities, as described in appendix A, the following 
equations are formulated: 

(a) the streamwise momentum integral equation, 

d(aEcwPcwW~w62) dWs:w Hp2 /a2R2\ Cf ds 
+ ( H ' 2 -  1) W s ~ w - - - W ~ d ~ - - f - ) + 2 5 2  +Am+GIn; [1] O'Eew Pew W3w ~2 

and 

(b) the mean-flow kinetic energy integral equathm, 

d(t~Eew Pew W~w63 ) t- r(y 1 M 2 dWs~w r(y =l)M~wd(t22R2~ CDds 
aEe pow - ) - \ 2 J + + a°  + G°; [21 

where R, O, ), and r denote the radius, rotational speed of the machine, ratio of the specific heats 
of gas and a recovery factor (Papailiou 1981), respectively. In [l] and [2], the terms Gm and G, are 
the source terms that introduce the effect of the dispersed phase to the continuous one, while Am 
and Ac are source terms introducing the influence of the surface curvature and the normal 
fluctuation terms on the gaseous phase shear layer (Bouras 1991). 

During the development of the governing equations, the normal momentum equation was used 
in order to express the difference between the real and the inviscid static pressures, namely 

EP - EeP~ = EPW', ~ + h.o.t. [3] 

(where h.o.t, denotes higher order terms), which was introduced into the streamwise momentum 
equation in order to render it in the form of [1]. Equations [1] and [2] are valid for both the 
axisymmetric case and the case with varying streamtube thickness, by setting the parameter a equal 
to the radius R or to the width of the corresponding streamtube, respectively. 

The equations can now be developed in their final form. New variables are introduced and certain 
assumptions are made (Assassa & Papailiou 1979; Papailiou 1970), in order to transform the 
governing equations to a form suitable for applying the present shear layer calculation method. 
First, a new form factor L~ is introduced through the relation 

dH32k 
dLk = H 3 2 k ( H I 2  k _ 1)" [4] 

It is worth noting that the 1.h.s. of [4] becomes a total differential once the form factor Hl~ is taken 
to be a unique function of the form factor H3~. Also that, since the definitions of the form factors 
H,2k and H32k, see [A.9] and [A. 11], remain identical in both single- and two-phase flows, the same 
similarity seems to exist for the form factor Lk. Then, a new intrinsic parameter X defining the 
shear layer behaviour, is introduced as 

X = In(Re3) + 2L~. [5] 

Finally, the velocity logarithm q and the velocity potential ¢ are introduced instead of the velocity 
Ws,,~ and the arc length s, defined as 

q = In Ws~w 
Wref [6] 

and 

= I s Wscw ds. [7] 
JO Vew 

By subtracting [1] from [2] and introducing the abovementioned form factors and parameters, 
the integral momentum equation for the gaseous phase becomes 

CoMd~ F3 / 'O2R:\ A.--Am G . -  Gm 
F'dLk=F2dq+--~e3 + "--T- d [ T )  -t Ws~. Q + T '  iS] 

where Q, M, F~, F: and F3 are quantities, the expressions for which are given in appendix B. 
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With the introduction of the new form factors and after some rearrangements, the integral energy 
equation for the gaseous phase takes the form 

d X - 2 d L ~ = - 2  l + ( r - c o )  M~w dq 

R~3 (r - co) (y  - 1 ) M ~  /'~'~2R2"~ + dR + Ao+ O,, [9] 

where co denotes the constant in Sutherland's law (Papailiou 1981). 
The terms Gm and Ge, expressing the influence of the dispersed phase on the continuous one, 

have the following form: 
Sm dR 

Gm -- £ewPew Ws~w2 Re2 [10a] 

and 

Se dR 
Ge E~wPew Ws~w3 Re3 " [10b] 

Sm and S. stand for terms that embody the momentum and energy exchanges between the two 
phases as well as between the shear layer and the external flow, in an integral form. Their 
expressions read 

f: ;o Sm= - [Spw~-(Spws).=~]dn + Ws~ [Sp-(Sp).=~]dn [11] 

and 

;0 +;; f; Se= -2  Ws[Spws (Spws).=a]dn (W~ + W~)Spdn - 2  WsWs~(Sp).=6dn, [12] 

noting that the mass and momentum source terms, Sp and Spws respectively, are specified once the 
calculation of the droplet properties is completed. In addition, Sow s is defined by 

Spws = Spy " s, [13] 

where s is the unit vector tangential to the wall and Spy is the vector of the source terms, 
representing the momentum exchange between the phases. 

2.2. The semi-empirical frame 
A basic assumption of the present formulation is that the turbulence semi-empirical frame 

established for single-phase shear layers is valid for the gaseous phase in two-phase flow problems. 
A similar statement is made for laminar flow. As an example, for the steam velocity profiles those 
described by Coles's laws (1955, 1956) are used and the compressibility effects are introduced using 
the generalized velocity of Van Driest (1951). When the gaseous phase velocity profile is established, 
the temperature distribution of the carrier phase at a certain station can be calculated using the 
Crocco relation (Van Driest 1951). Details for the two-dimensional compressible, laminar and 
turbulent, attached and detached shear layer semi-empirical frame can be found in Papailiou & 
Bouras (1990) and Papailiou (1981). There, it is explicitly estabhshed that two shear layer intrinsic 
parameters, for instance a form factor and a Reynolds number, are sufficient in order to deduce 
all the other shear layer properties at a section (local similarity). This is compatible with the two 
integral equations at hand. 

It should be noted that for two-phase flows the semi-empirical relations correlating the gaseous 
phase kinetic quantities remain unaffected by the presence of the second phase. This is due to the 
fact that in the definitions of the corresponding thicknesses the void fraction E, which accompanies 
the gas density, does not appear. In this way, the curves H3:k(H,2k) and Lk(Hnk), for example, 
remain identical for the two problems. On the other hand, the development of various semi- 
empirical relations requires the introduction of the void fraction E or/and the source terms. This 
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is the case, for instance, for the dissipation factor CD, which appears in the governing equations 
and is calculated in a manner similar to the one presented by Papailiou (1981) as 

U~ ~2 H 

CD = [141 

where u, stands for the friction velocity and /7 denotes the shear layer equilibrium parameter, 
defined as 

/7 = 6,k d(GP,) 
IEwvwl ds 

In the same way, appropriate expressions for the two-phase flow case have been developed for the 
various terms retained in the present formulation. It is worthy of mention that the method is 
capable of taking into account wall curvature and Coriolis force effects on turbulence (Leoutsakos 
& Papailiou 1990). Additional corrections for the two-phase case have been made to the terms 
accounting for the aforementioned influences. 

For the correct prediction of flow separation and the subsequent separated region, the normal 
fluctuation terms, in an integral form, appearing in [8] and [9] are important. As an initial 
formulation, the single-phase modelling established by Gerolymos et al. (1984) is thought to be 
valid for the two-phase flow as well. 

During the shear layer development, an exchange of energy between the two phases is taking 
place, so that the turbulent shear layer state is influenced by the presence of the liquid phase. The 
basic assumption that has been made specifies that the general laws established for single-phase 
turbulent shear flows are valid during this exchange. However, indications exist that turbulent 
behaviour is affected by the presence of droplets (Mostafa & Mongia 1987). For the moment, in 
view of the distinct lack of experimental results, it was considered that such an influence is 
superfluous. However, the formulation of the method is suffÉciently flexible that additional 
information can be easily introduced, when available. 

2.3. Lagrangian formulation for the dispersed phase 

Two approaches exist for modelling droplet motion throughout the flow field. The first, the 
"two-fluid" model, treats the dispersed phase as a continuous phase and uses another set of 
conservation equations, together with appropriate boundary and interface conditions, in order to 
describe the motion of the dispersed phase. The second, the "trajectory" model, treats the 
droplets in a Lagrangian fashion; individual droplets are tracked into the flow field and their 
trajectories, as well as their temperature and diameter histories, are calculated by solving the 
corresponding transport equations. In this work, the "trajectory" model was selected on the 
grounds of the advantages it appears to possess over the "two-fluid" model. For a detailed 
presentation of the relevant advantages and a discussion of the limitations and computer cost of 
these two models, the reader is referred to the review papers by Mostafa & Mongia (1987) and 
Crowe (1982). 

It is assumed that the droplets are sufficiently dispersed so that droplet-droplet interaction is 
negligible. This assumption restricts the present study to dilute particulate suspensions. In the 
discrete droplet approach, the dispersed phase is represented by computational droplets rather than 
a continuous distribution function. This amounts to a statistical formulation of the problem, since 
a finite number of droplets is used to represent the very large number of them present in the field. 
Each of these computational droplets characterizes a group of physical droplets possessing the same 
characteristic size, velocity and temperature. In the present study, the effect of gas turbulence on 
droplet dispersion is ignored (deterministic treatment), since turbulent diffusion generally loses its 
importance in motions of droplets larger than about 3/~m (Menguturk et al. 1983). 

The entry of the droplets in the flow field is represented by a finite number of entry ports. If 
rha is the total droplet mass inflow rate, Xj is the mass fraction of droplets entering the field at port 
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j and yk is the mass fraction of droplets with initial diameter d,kn, the number flow rate of spherical 
droplets having initial diameter d,k, and entering the flowfield at port j is 

rrpa(dkn)3 . [15] 

The number flow rate 29 k remains constant along a droplet trajectory (Durst et al. 1984). 
For large droplet-to-gas density ratios, the only important forces acting on a droplet are the 

inertia, drag and gravity force, in which case the equation of motion for the kth computational 
droplet becomes 

DV* ( P--~g - 2ma*(12 x (12 xk)], [16] m a g ~ = F  k +  1 -  V k)-mk[12 x x 
Po/ 

where V and X are the droplet velocity and position vectors, respectively, FD is the vector of the 
drag force, defined as 

Fk 1 /t(dk) 2 ~k ,! 
D=~  4 Pt~DIw--Vkl(W-- Vk)' [17] 

g is the gravity vector and m k is the mass of the kth computational droplet with diameter d k. The 
last two terms in [16] are the Coriolis and centripetal forces, respectively, which appear in the 
equation of motion when the total derivative D / D t  refers to a coordinate system rotating around 
the axis of the turbomachine, with a constant angular speed t2 equal to the rotational speed of the 
machine. In [17], W denotes the gaseous phase relative velocity vector. 

In turbulent flows, the motion of droplets near a solid wall is primarily affected by shear-induced 
lift, while the effect of the drag increase and the lift caused by free rotation are comparatively small. 
In this respect, the normal to the wall component of the equation of motion has to be modified 
by adding the lateral lift term (Saffman 1968), namely 

FL = 1.615#(dk)2k/P 0Ws 
"--~-n (Ws -- Vk)' [181 

where # is the dynamic viscosity of the carrier phase. The derivation of [18] was restricted to low 
droplet Reynolds numbers, which means that it is valid for relatively large shear and small particle 
sizes. Additionally, [18] was derived for uniform shear (linear velocity gradient), which is almost 
the case for the region outside the laminar sublayer. In view of these restrictions, the effect of the 
lift force should be regarded as approximate. 

The drag coefficient C k, appearing in [17], is given as a function of the Reynolds number and 
a correction is added to take into account the mass exchange (Renksizbulut & Haywood 1988): 

Cko = C k ( l  + B) -°2, [19] 

where B is the transfer coefficient (Spalding number), expressed as 

T -  T,t 
B = cp L ' [20]  

where Cp, T, T.t and L denote the gaseous phase specific heat at constant pressure, temperature, 
saturation temperature and latent heat of vaporization, respectively, and 

r 24/Rek' Rek < l 
/ 

C k = -~ 24/Rek[1 + 0.15(Rek)°6sT], 1 6 Re k ~< 1000 [21] 
/ 
[.0.44, Red k > 1000; 

with the droplet Reynolds number defined as 

p IW - Vkld k 
Re k = [221 

# 
The droplet location at any instant of time is determined from 

DX k 
- -  = V k. [23]  
Dt 
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The mass equation for the kth computational droplet yields 

Dm~ = th~ = Pd(•k)dk In(1 + B)[2 + 0.56(Re~)°5(Pr)°33], [24] 
Dt pCp 

where m~ = Pd rc(dk)3/6 and the term in the brackets expresses a correction factor (= Nu) used to 
model the vaporization rate in a convective field (Crowe et al. 1977), while Pr stands for the Prandtl 
number of the carrier phase. The heat balance equation for the droplet reads 

k DT~ [ D m ~ \  
= Nu(nk)dk(T - rk )+  L~---~-) ,  [25] mdCd--- ~ -  

where Cd is the specific heat of droplet and k is the thermal conductivity of the carrier phase. The 
first r.h.s, term of the above equation expresses the heat absorbed from the surrounding gas by 
convection only, while the second term is the heat due to evaporation. 

When droplet properties are known in each node of a certain cross-section, the carrier phase mass 
and momentum source terms per unit volume, resulting from all particle trajectories, are obtained 
as follows: 

NID 

Sp = ~ [Nkrh~ [26] 
kffil  

and 

and the void fraction E as 

NID 

Sov = - ~ [Nk(FD + tad V)k], [27] 
kffil  

NIo[ 
E = 1 - N k , [ 2 8 1  

kffil  

where NID stands for the number of the initial droplet diameters and N k stands for the number 
density of droplets with initial diameter d,kn. The number density N k is related to the number flow 
rate Nk as follows: 

NK = NklVkl. [29] 

2.4. The solution procedure 

The integral shear layer method requires the knowledge of the flow quantities distributions along 
the solid walls; these are obtained from the solution of the inviscid flow solver. In a two-phase flow 
problem, besides the gaseous phase external flow velocity distribution, the droplets' properties 
(diameter, velocity components etc.) are also required at the edge of the shear layer. This 
information determines whether droplets flow in or out of the shear layer domain, as the calculation 
marches downstream. The inlet velocity and temperature profiles need to be specified also. The 
wall's orientation with respect to the rotating axis is necessary in order to evaluate the second-order 
terms appearing in the equations and the influence of the Coriolis force and streamline curvature 
on turbulence. 

Considering two successive streamwise positions inside the shear layer, one where all the flow 
quantities are known and the following one, where the quantities have to be calculated, the 
procedure starts by assuming a steam velocity profile at the second (current) location. In this 
manner, an approximate flow field is established. Then, a trajectory calculation is performed in the 
interval between the two considered positions and the liquid phase flow field at the current station 
is thus obtained. Equations [8] and [9] are solved in turn for the gaseous phase with updated source 
terms, using a Newton-Raphson method. A new steam velocity profile can now be determined and 
the procedure continues until convergence. 

For the trajectory calculation, a classical geometrical transformation is employed, which maps 
the real flow domain (x, y) to a computational one (~, q) with equidistant nodes. A fourth-order 
Runge-Kutta scheme is used to transfer information from a certain cross-section to the next, where 
droplet properties have to be calculated, except from the point at the wall. 

For the present investigation it is assumed that when the droplets reach the wall surface they 
remain on the wall, slipping over it. This assumption is quite a realistic one and becomes more 
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Figure 2. Geometry and mesh of  the upper half of  the duct 

convenient in the case where a liquid film flows underneath the core shear layer. So, the boundary 
conditions for the dispersed phase are: 

v~. = o, ~ v~ = o, °N~ = o. 
On On 

3. R E S U L T S  A N D  D I S C U S S I O N  

Numerical solutions were obtained for two-dimensional compressible flows passing through a 
rectangular convergent--divergent duct, shown in figure 2. The distributions of the external flow 
quantities along the upper and lower walls, necessary for the prediction of the shear layer 
development along these surfaces, were obtained from the two-phase Euler code presented by 
Malamatenios et al. (1990). 

To establish a baseline for two-phase flow modelling, predictions of a single-phase fluid flow field 
were made first (case 0). Then, two mass loading ratios, defined as the ratio of droplet-to-gas mass 
flow rate at the inlet plane, LR = 1 and LR = 2, were considered for droplets with initial diameter 
d,, = 10/~m (cases 1 and 2); while for the droplets with d,n = 5/~m, LR = 1 (case 3). Test runs were 
performed for an isentropic Mach number of the external steam flow equal to 0.3. Figure 3 presents 
the calculated distribution of the inviscid steam velocity along the lower wall for eases 0 and 2. 

The inlet conditions for the shear layer calculations were Rea = 75,000 and u,/Ws~ = 0.035. Steam 
was treated as a perfect gas with isentropic exponent 7 = 1.33. The saturation temperature T,t has 
been calculated from the steam static pressure P using the relation 

Tsar(K) = 45. + 1668.21/[10.09171 - logm(P)]. 
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Figure 3. Gaseous phase inviscld velocity distributions 
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The initial droplet density profile at the inlet of the shear layer was assumed to follow a 
second-order distribution across the section and the inlet droplet velocity was equal to that of the 
gaseous phase. 

Figures 4 and 5 present the skin friction coefficient Cf distribution along the lower surface, for 
the four cases. From its definition, [A. 13], it can be seen that the skin friction coefficient may be 
calculated once the gaseous phase velocity profile is established. The first figure is used to compare 
cases with the same LR but different initial droplet diameters and the second one to examine the 
flow behaviour for different LR values, for the same initial droplet diameter. Apart from a small 
region in the convergent part of the duct, Cf is smaller in a two-phase than in a single-phase 
environment. For the same LR, the smaller the droplets are the smaller the friction coefficient is, 
at least out of abruptly accelerating or decelerating flow regions (figure 4). This can be explained 
by the fact that, for the same loading, the effective droplet area increases when the droplet size 
falls and hence, the rate of exchange of mass, momentum and energy increases as well. This 
reduction of Cf becomes more pronounced in the case where droplets double their population 
(figure 5). 

In the convergent part of the duct, droplets hit the solid wall and this results in a local increase 
in the Cf values. On the other hand, downstream of the throat, where the flow tends to recover, 
the droplets move almost parallel to the wall and a significant reduction of Cf is observed. Such 
a reduction has also been observed by Pfeffer &Kane (1976), who claimed that this behaviour is 
due to the reduction of the gas viscosity, the thickening of the laminar sublayer and/or general 
turbulence suppression. In the present analysis, no important temperature difference in the steam 
was observed between the single- and two-phase flow cases which would result in a reduction of 
the steam viscosity. On the other hand, the authors believe that, with respect to the present model, 
the explanation must be traced to the increase in the dissipation factor Co. Its streamwise 
distribution is presented in figure 6. The turbulent energy dissipation, being higher for the gaseous 
phase when droplets are present, demonstrates that the shear layer is closer to separation. It is 
expected, then, for the corresponding skin friction values to be closer to zero. 

Figure 7 presents the form factor HI2 distribution along the lower surface for all four cases. It 
is observed that strong similarities exist in the four HI2 distributions, all exhibiting an opposite trend 
to that of Cf. Finally, the distribution of the energy thickness is presented in figure 8, for all the 
test cases and for the lower wall surface. This quantity corresponds to the mean kinetic energy loss 
having occurred in the shear layer with respect to the external flow at the same station. It is 
observed that during the acceleration phase, the loss occurring in the shear layer with respect to 
what has occurred in the outer flow, is almost identical for all cases. During the deceleration phase, 
however, the loss increases for the two-phase situation. The loss is highly influenced by the LR 
and increases with increasing loading. 

Similar behaviour has been observed for the distributions calculated for the upper surface, where 
slight differences between the corresponding curves are attributed to the gravity effects on droplet 
motion. 
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Figure 5. Skin friction coefficient distribution along 
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Figure 7. Effect of  droplet presence on the form factor Hi2. 
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Figure 8. Effect o f  droplet presence on the steam energy 
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4 .  C O N C L U S I O N S  

A two-phase shear layer calculation procedure was presented, capable of predicting the 
non-equilibrium effects in the vicinity of blade surfaces of wet steam turbines. The method provides 
information on the development of the steam shear layer along the blade surface and the motion 
of the droplets within the shear layer. The computational time is quite reasonable. 

Test runs were performed for the lower and upper surfaces of a two-dimensional conver- 
gent-divergent duct and qualitative comparisons are presented along with single-phase results. A 
reduction of the skin friction coefficient was observed in the two-phase case in regions where 
droplets move parallel to the wall This was attributed to the corresponding increase in the 
dissipation factor values. On the other hand, the H~2 and ~3 distributions were found to have a 
rather similar bchaviour in single- and two-phase flows. Differences between the upper and lower 
wall distributions were attributed to gravity effects. Unfortunately, a detailed quantitative 
validation of the method could not be realized due to the lack of available experimental data for 
comparison. 

The authors believe that the above calculations shed some light on the nature of the viscous 
phenomena occurring in wet steam flows and that it will eventually be possible to supply the turbine 
designer with a reliable computational tool. 
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A P P E N D I X  A 

The various characteristic quantities of the shear layer, as modified for the two-phase flow case, 
are defined as follows: 

displacement thickness ~1, 

E~.pew Ws=.rl = f ~ (E,p= Ws= - EpWs) dn; [A.1] 

momentum thickness re, 

E,.p~, Ws~,,62 = (Ws~ - Ws)~p Ws dn; [A.21 

energy thickness 6j, 

fo' E~p~ W~,.63 = (W~ - W~)~pW s dn; [A.3] 

kinetic displacement thickness 61k, 

I: Ws~6~k = (Ws~ - Ws) dn; [A.41 
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kinetic momentum thickness 5z,, 

fo 2 = (Ws~- Ws)Wsdn; Ws~w52k 

kinetic energy thickness 5zk, 

W~w~ (w~- W~)W~dn; 

[A.5] 

[A.61 

and 

density thickness 6o, 

= f~  (Qpe - Ep) dn, [A.7] £ew/gew~p 

where E, p, 5 and Ws denote the gaseous phase residence time fraction, material density, boundary 
layer thickness and relative velocity tangent to the wall, respectively. Subscripts e and w stand for 
external flow quantities and values at the wall, respectively. 

According to the previous definitions, the momentum thickness form factors H~2 and H m ,  the 
energy form factors//32 and H32k and the density form factor H02 are given by 

Hi2 = 61/62, 

HI2 k = (~lk/l~2k, 

and 

[A.8] 

[A.9] 

[A.10] 

[A.I1] 

[A.12] 

[A.13] 

[A.14] 

[A.15] 

H32=~3 /~2 ,  

/"/32 k = ~3k/62k 

H,2 = ~./62. 

The skin friction coefficient Cf is defined as 

Cf..~_ 2 e w Z w  E w P w ( U x l 2  
2 ~ 2 • 

Q. P,w Ws~w Qw p~. \ Ws=./ 

where 3. stands for the wall shear stress. 
The dissipation factor CD is given by 

2 fo'rOWs 
- 3 dn. 

CD = £ew Pew Wscw 0n 

The Reynolds numbers Re,, based on various thicknesses 6 .  are defined by 

Ws~wS, 
Re, -- - - ,  

Yew 

where v is the kinematic viscosity of the gaseous phase. 

A P P E N D I X  B 

This appendix gives the expressions of  the quantities appearing in [8]; it is worth noting that they 
are identical to the corresponding coefficients of  the single-phase flow equations, given in detail 
by Papailiou & Bouras (1990): 

Q -- (H12 -- 1) -- r(7 -- 1)ML, 
M = [1 - CfH32/(2CD)]/Q, 

Fl = (Hi2k -- 1)/Q, 

[B.I] 

[B.2] 

[B.3] 
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and 

[1 + (? -- 1)M~w/2](2KIM~,+ 3K~M~)M~, 
F2= Q" (1 + K~M~ + K2M~w) [B.4] 

& = [,(~ - I)ML - H,~]/Q. [B.5] 

The constants Kt and K2 appearing in [B.4], result from the use of the relation 

H32 = H32k(l + Kt M~w + K2M~) [B.6] 

in the derivation of the final form of the gaseous phase integral momentum equation. Relation [B.6] 
connects the form factor H32 with the kinetic form factor H32k and the Mach number of the external 
flow and is valid for unseparated gaseous phase shear layers, according to Papailiou 0981). 


